Update on Medical Device Interoperability

Julian M. Goldman, MD
Massachusetts General Hospital Depts. of Anesthesia and Biomedical Engineering
Director, CIMIT Program on Interoperability and the
Medical Device Plug-and-Play (MD PnP) Program
Chair pro tem ISO TC 121; User Vice Chair ASTM F29
Boston, Massachusetts

Contact information: www.jgoldman.info
Problem statement

• Improvements in patient safety, patient care, and healthcare efficiency require systems solutions
 – cannot be implemented due to the lack of interoperability of medical devices and systems, especially in high-acuity clinical settings.

• Ability to “integrate the clinical environment” is an essential step to create error-resistant systems

• Requirement: medical device system integration.
 – Medical device interoperability is a key enabling capability.
Conceptual framework for device and data integration

- Comprehensive integration of clinical and non-clinical data, devices, and systems can provide “error-resistance” and reduce inefficiencies:
 - **Smart Alarms** requires “contextual awareness”
 - Example: Vent data for PVR interpretation
 - **Workflow Support** requires “closing the workflow loop”
 - **Safety Interlocks** require tight system integration
 - Not limited to the OR: ICU, ER, home, etc.

- **These solutions require seamless cross-vendor connectivity, which is not currently available:**
 - STA members and individual companies cannot implement potentially important solutions
 - Therefore, many great ideas die on the vine
Overview of the Medical Device “Plug-and-Play” Interoperability Standardization Program (MD PnP)

MGH and CIMIT, with TATRC support, initiated the MD PnP program in 2004 to lead the adoption of open standards and technology for medical device interoperability to improve patient safety.

More than 85 companies and institutions and > 700 experts (clinicians and engineers) have participated in four plenary conferences, working group meetings, and clinical focus groups to shape the mission and strategy and identify clinical requirements.
MD PnP stakeholder community 2004: *key issues must be addressed for adoption of interoperability:*

- Must be **clinical-requirements** based
- **Regulatory** obstacles
- **Liability** concerns
- Unclear **business case**
- No widely adopted **standards**
- In summary: Interoperability requires many elements to be aligned
Goals of the MD PnP Program

1. Lead the adoption of open standards and related technology to support medical device interoperability and system solutions

2. Define a regulatory pathway in partnership with the FDA and other regulatory agencies

3. Elicit clinical requirements for the proposed interoperable solutions to maintain focus on patient safety.

4. Use our vendor-neutral laboratory to:
 – evaluate interoperability standards and solutions
 – model clinical use cases (in simulation environment)
 – serve as a resource for medical device interoperability

5. Investigate safety of proposed engineering solutions
MD PnP Program collaborators 2004-2009

- NSF
- Philips Healthcare
- Lockheed Martin
- and others
MD PnP Program Projects

- Clinical Scenarios/Use Cases
- Society Endorsements
- Standards - “ICE” and others
- FDA position/projects
- Healthcare provider purchasing language - MD FIRE

MD PnP stakeholder community 2004:
key issues must be addressed for adoption of interoperability:

- Must be clinical-requirements based
- Regulatory obstacles
- Liability concerns
- Unclear business case
- No widely adopted standards
In summary: Interoperability requires many elements to be aligned
Clinical Requirements

Focus groups: “Provide examples of how interoperability could improve safety or efficiency now or enable future innovations. Assume no financial or technical limitation”
<table>
<thead>
<tr>
<th>Req #</th>
<th>Clinical Scenario</th>
<th>Current Hazards</th>
<th>Proposed State</th>
<th>Future Hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLN-050</td>
<td>ESU causes interference on ECG</td>
<td>Risks to patient safety due to poor diagnostics</td>
<td>Notify devices of ESU activity to eliminate/reduce ESU interference, or flag bad data</td>
<td>none</td>
</tr>
<tr>
<td>CLN-011</td>
<td>Difficult to reposition patient, cables, devices due to cluttered physical environment ("malignant spaghetti")</td>
<td>Devices could get disconnected, causing patient harm; it is difficult to maintain a clean environment with cables; visual paths of clinicians can be obstructed</td>
<td>Uncluttered environment, allowing appropriate communication between devices, information system, and patient; ease of movement of desired resources without barriers (NOT WIRELESS)</td>
<td>Possible interference of communication paths</td>
</tr>
<tr>
<td>CLN-052</td>
<td>Operating room lights and anesthesia task lights are not coordinated</td>
<td>Can end up in total darkness</td>
<td>Interconnect lighting, such that when room lights go off, anesthesia machine task light goes on</td>
<td>May want to work in the dark. Must permit override</td>
</tr>
<tr>
<td>CLN-048</td>
<td>Electronic medical record is missing medical device-generated data</td>
<td>Lack of adequate data for clinical decision-making</td>
<td>Comprehensive medical record, with capture of all medical device-related data in EMR: patient ID, equipment IDs, "ESU on" vs. "ESU off" (especially for later analysis)</td>
<td>EMR may become "bloated", overly complex</td>
</tr>
</tbody>
</table>

EXAMPLE Clinical Scenario worksheet

CLN-017 Laser, x-ray use in the OR

Unprotected personnel may enter OR unknowingly

Laser/x-ray outputs network message for automatic notification outside clinical environment during laser use

Failure of notification system; wrong room, wrong device activated
Clinical Requirements

- AAMI
- SAGES
- Clinical Scenarios
- Others

Jan 2005

Clinical Scenario
Clinical Workflow
Use Cases
Logic Map/Key
State Diagram
Technical Solution and Clinical Implementation
Clinical Scenarios included in draft ICE Standard
Medical Device Free Interoperability Requirements for the Enterprise

• Interoperability RFP and Contract samples
• Developed by MGH, Partners, Hopkins, Kaiser
• Conveys healthcare needs to industry, and simplify purchasing specifications
• Released for public use Oct 17, 2008
Medical Device Free Interoperability Requirements for the Enterprise (MD FIRE)

Medical Device Interoperability for Patient Safety: Driving Procurement Changes

October 2008

Medical Device Plug-and-Play (MD PnP) Program
Massachusetts General Hospital / Partners HealthCare System
Johns Hopkins Medicine
Kaiser Permanente

This paper discusses the requirements for medical device interoperability in the modern healthcare environment. These requirements are changing the way in which we procure medical devices. An appendix provides shareable RFP and contract language examples.

5 Stakeholders:
BME
IS
Clinical
Purchasing
Lawyers

Download MD FIRE from www.MDPnP.org
“Our collaboration through the Medical Device Plug-and-Play (MD PnP) program over the last four years leads us to conclude that Healthcare Delivery Organizations (HDOs) must lead a nationwide call to action for interoperability of medical devices and systems. One way that HDOs can effect this change is by including medical device interoperability as an essential element in the procurement process and in vendor selection criteria.”

Signed: MGH, PHS, Hopkins, Kaiser
October 2008
Download: http://mdpnp.org/MD_FIRE.php
Clinical Society “Requirements”

“We believe that intercommunication and interoperability of electronic medical devices could lead to important advances in patient safety and patient care, and that the standards and protocols to allow such seamless intercommunication should be developed fully with these advances in mind…”

as of Nov 2008:

Anesthesia Patient Safety Foundation
Society for Technology in Anesthesia
Society of American Gastrointestinal Endoscopic Surgeons

World Federation of Societies of Anesthesiologists
American Society of Anesthesiologists
Massachusetts Medical Society
“ICE” Standard - Integrated Clinical Environment

- New draft standard describes requirements for safe and effective “plug-and-play” integration of devices in high-acuity environments
- Developed MD PnP Program writing group convened under the authority of ASTM Committee F29*
- First draft: June 2006 (Draper Laboratory). ASTM Ballot Closes: January 26, 2009

*ASTM F29.21 Devices in the Integrated Clinical Environment
Scope of ICE Part I

“This International Standard … Integrated Clinical Environment (ICE) … is intended to facilitate the safe integration of medical devices and other equipment from different manufacturers into a medical system for the care of a single high acuity patient. ICE is a medical system that has greater capability to support error resistance and improvements in patient safety, treatment efficacy and workflow efficiency than that achievable from independently used individual medical devices.”
Functional Elements of the Integrated Clinical Environment

Key
1 patient
2 medical device
3 Equipment
4 ice interface
5 ice network controller
6 data logger
7 ice supervisor
8 ice manager
9 operator (clinician)
10 ICE
11 external interface

From ASTM Draft ICE Part I

ICE leaves many elements unspecified
Can serve as a collaboration framework
The ICE **supervisor** supports the following patient-centric capabilities of the integrated clinical environment

- Provide safety interlocks
- Distribute integrated alarm conditions to relevant operators
- Provide context-aware clinical decision support
- Set command input variables of other medical devices, per operator-defined, context-appropriate rules in order to manage their operation (e.g. change NIBP cycle interval)
- Assess the readiness of medical devices in a clinical environment to support specified functions or clinical workflow
- Perform integration of alarm conditions from multiple medical devices
- Perform automated record keeping
- Support integrated control* of devices

Control of those features made available through the ICE interface (box #4)

From draft ICE Part I
Functional Elements of the Integrated Clinical Environment

Key
1 patient
2 medical device
3 Equipment
4 ice interface
5 ice network controller
6 data logger
7 ice supervisor
8 ice manager
9 operator (clinician)
10 ICE
11 external interface

From draft ASTM ICE Part I

Current draft: http://mdpnp.org/ice.html
The ICE network controller supports the following patient-centric capabilities of the integrated clinical environment:

- Provide “Plug and Play” (PnP) connectivity with medical devices and other devices
- Interface with equipment that contains an ice equipment interface
- Provide data logs for forensic analysis (flight recorder)
- Perform network control functions independently of the underlying data communication mechanization
- Provide relevant information to support a healthcare equipment management system
- Also provides a common time base and binding of data to patient identity
- Also can provide and retrieve relevant clinical data to a healthcare information system/electronic medical record/electronic health record (HIS/EMR/EHR)

From draft ICE Part I
ICE - in a standards context

ICE

- Patient Centric Clinical Use Cases
- Systems Approach
- Regulatory Pathway

IEC 80001

- Enterprise Level Risk Management Processes

IEEE 11073

- Device Communication Nomenclature
- Communication Based Device Models

IEC 60601-1-10

- Physiological Closed Loop Control

IHE Patient Care Domain

- Interoperability Frameworks
ICE in clinical data context

PHR
- Medication List
- Lab Summary
- Historical Vitals
- Imaging Summary
- Summary of Medical History

EMR
- Discharge Summary
- Physician Notes
- Lab Results
- Imaging Results
- Historical Patient Data
- Current Network Medical Data

CIS
- Monitoring of real time data subset
- Summarized Real Time Data (Flow Sheet)
- Clinical Information System
- Order Data
- Image Data
- Lab Results
- Notes
- Medication
- Reconciliation
- Admit-Discharge-Transfer

ICE
- Real Time Physiological Data
- In Patient Historical Data
- Clinical Observation
- Real Time Laboratory
- Environmental Data
- Alarms
- Medication Data
2.2 Scope Common device connectivity is the means by which clinical device information such as settings, measurements, and monitoring values are communicated to an EHR. Examples of devices include hemodynamic monitors, ventilators, anesthesia monitors, and infusion pumps. Therefore, requirements for common device connectivity can be summarized as:

The ability to communicate clinical device information to an EHR.

The identification, development, and harmonization of standards to support communication of device information to EHRs still requires additional work. As mentioned in Section 1.0, these needs have not yet been fully addressed by the national health agenda’s standardization efforts. Examples of gaps in industry standards are outlined in the upcoming sections of this extension/gap document.
C. The ability to communicate measurement information to the EHR for effective patient monitoring and management.

D. The ability to uniquely identify a device and related components, communicate device setting and detailed device information associated with each measurement value, to the EHR.

E. The ability to communicate and manage measurement intervals and device setting information within the EHR.

F. The ability to query for additional device information captured by the device that may not have been communicated to the EHR.

I. The ability to set and communicate limits and safeguards for device settings from the EHR to a device.
Will we reach the tipping point?

- Clinical Push (Societies)
- Hospital Demand (MD FIRE)
- Technology / Platform*
- Standards*
- Regulatory (FDA)
- Document Clinical Need / IOM
- Alignment with Federal HIT initiatives*

* Greatest gaps

interoperability

adoption
Adoption of medical device interoperability (standards and technologies) will support:

1. Complete, accurate electronic medical records
2. Rapid deployment of devices in makeshift emergency care settings
3. Clinical decision support systems and smart clinical alarms
4. Support of remote healthcare delivery
5. “flight data recorder” to facilitate adverse events analysis
6. Automated system readiness assessment (prior to starting invasive clinical procedures or critical care transport)
7. Reduce cost of devices and their integration, and reduce EMR-adoption costs
8. Closed-loop control of therapeutic devices and safety interlocks (e.g. ventilation, medication and fluid delivery)
9. Pathway for innovative medical applications (by STA members)
What is needed?

• Development of an open research platform to facilitate:
 – Evaluation of proposed engineering solutions
 – Standards gap analysis and resolution
• More complete interop standards
• Trial implementation in innovative healthcare setting
• Alignment with Federal HIT initiatives
• Increase consumer demand (MD FIRE)
• Data to supplement anecdotal benefits of interop
• Broaden outreach: use slides, MD FIRE, society endorsements, etc.
Contact info: www.jgoldman.info

MD PnP Program: www.mdpnp.org